
objgraph Documentation
Release 3.1.2

Marius Gedminas

Nov 27, 2017

Contents

1 Installation and Documentation 3

2 Quick start 5

3 Backreferences 7

4 Memory leak example 9

5 Reference counting bugs 13

6 API Documentation 15
6.1 objgraph . 15

7 More examples, that also double as tests 21
7.1 Too many references . 21
7.2 Reference counts . 22
7.3 Extra information . 22
7.4 Highlighting . 25
7.5 Uncollectable garbage . 25
7.6 Stack frames and generators . 28
7.7 Graph searches . 31
7.8 Quoting unsafe characters . 31

8 History 33
8.1 Changes . 33

9 Support and Development 39
9.1 Hacking on objgraph . 39

Python Module Index 43

i

ii

objgraph Documentation, Release 3.1.2

objgraph is a module that lets you visually explore Python object graphs.

You’ll need graphviz if you want to draw the pretty graphs.

I recommend xdot for interactive use. pip install xdot should suffice; objgraph will automatically look for it
in your PATH.

Contents 1

https://www.graphviz.org/
https://pypi.python.org/pypi/xdot

objgraph Documentation, Release 3.1.2

2 Contents

CHAPTER 1

Installation and Documentation

pip install objgraph or download it from PyPI.

Documentation lives at https://mg.pov.lt/objgraph.

3

https://pypi.python.org/pypi/objgraph
https://mg.pov.lt/objgraph

objgraph Documentation, Release 3.1.2

4 Chapter 1. Installation and Documentation

CHAPTER 2

Quick start

Try this in a Python shell:

>>> x = []
>>> y = [x, [x], dict(x=x)]
>>> import objgraph
>>> objgraph.show_refs([y], filename='sample-graph.png')
Graph written todot (... nodes)
Image generated as sample-graph.png

(If you’ve installed xdot, omit the filename argument to get the interactive viewer.)

You should see a graph like this:

If you prefer to handle your own file output, you can provide a file object to the output parameter of show_refs
and show_backrefs instead of a filename. The contents of this file will contain the graph source in DOT format.

5

objgraph Documentation, Release 3.1.2

6 Chapter 2. Quick start

CHAPTER 3

Backreferences

Now try

>>> objgraph.show_backrefs([x], filename='sample-backref-graph.png')
...
Graph written todot (8 nodes)
Image generated as sample-backref-graph.png

and you’ll see

7

objgraph Documentation, Release 3.1.2

8 Chapter 3. Backreferences

CHAPTER 4

Memory leak example

The original purpose of objgraph was to help me find memory leaks. The idea was to pick an object in memory
that shouldn’t be there and then see what references are keeping it alive.

To get a quick overview of the objects in memory, use the imaginatively-named show_most_common_types():

>>> objgraph.show_most_common_types()
tuple 5224
function 1329
wrapper_descriptor 967
dict 790
builtin_function_or_method 658
method_descriptor 340
weakref 322
list 168
member_descriptor 167
type 163

But that’s looking for a small needle in a large haystack. Can we limit our haystack to objects that were created
recently? Perhaps.

Let’s define a function that “leaks” memory

>>> class MyBigFatObject(object):
... pass
...
>>> def computate_something(_cache={}):
... _cache[42] = dict(foo=MyBigFatObject(),
... bar=MyBigFatObject())
... # a very explicit and easy-to-find "leak" but oh well
... x = MyBigFatObject() # this one doesn't leak

We take a snapshot of all the objects counts that are alive before we call our function

>>> objgraph.show_growth(limit=3)
tuple 5228 +5228

9

objgraph Documentation, Release 3.1.2

function 1330 +1330
wrapper_descriptor 967 +967

and see what changes after we call it

>>> computate_something()
>>> objgraph.show_growth()
MyBigFatObject 2 +2
dict 797 +1

It’s easy to see MyBigFatObject instances that appeared and were not freed. I can pick one of them at random and
trace the reference chain back to one of the garbage collector’s roots.

For simplicity’s sake let’s assume all of the roots are modules. objgraph provides a function,
is_proper_module(), to check this. If you’ve any examples where that isn’t true, I’d love to hear about them
(although see Reference counting bugs).

>>> import random
>>> objgraph.show_chain(
... objgraph.find_backref_chain(
... random.choice(objgraph.by_type('MyBigFatObject')),
... objgraph.is_proper_module),
... filename='chain.png')
Graph written to ...dot (13 nodes)
Image generated as chain.png

It is perhaps surprising to find linecache at the end of that chain (apparently doctest monkey-patches it), but
the important things – computate_something() and its cache dictionary – are in there.

There are other tools, perhaps better suited for memory leak hunting: heapy, Dozer.

10 Chapter 4. Memory leak example

https://pypi.python.org/pypi/guppy
https://pypi.python.org/pypi/Dozer

objgraph Documentation, Release 3.1.2

11

objgraph Documentation, Release 3.1.2

12 Chapter 4. Memory leak example

CHAPTER 5

Reference counting bugs

Bugs in C-level reference counting may leave objects in memory that do not have any other objects pointing at them.
You can find these by calling get_leaking_objects(), but you’ll have to filter out legitimate GC roots from
them, and there are a lot of those:

>>> roots = objgraph.get_leaking_objects()
>>> len(roots)
4621

>>> objgraph.show_most_common_types(objects=roots)
...
tuple 4333
dict 171
list 74
instancemethod 4
listiterator 2
MemoryError 1
Sub 1
RuntimeError 1
Param 1
Add 1

>>> objgraph.show_refs(roots[:3], refcounts=True, filename='roots.png')
...
Graph written to ...dot (19 nodes)
Image generated as roots.png

13

objgraph Documentation, Release 3.1.2

14 Chapter 5. Reference counting bugs

CHAPTER 6

API Documentation

6.1 objgraph

Tools for drawing Python object reference graphs with graphviz.

You can find documentation online at https://mg.pov.lt/objgraph/

Copyright (c) 2008-2017 Marius Gedminas <marius@pov.lt> and contributors

Released under the MIT licence.

6.1.1 Statistics

objgraph.count(typename[, objects])
Count objects tracked by the garbage collector with a given class name.

The class name can optionally be fully qualified.

Example:

>>> count('dict')
42
>>> count('mymodule.MyClass')
2

Note: The Python garbage collector does not track simple objects like int or str. See https://docs.python.org/3/
library/gc.html#gc.is_tracked for more information.

Instead of looking through all objects tracked by the GC, you may specify your own collection, e.g.

>>> count('MyClass', get_leaking_objects())
3

15

https://mg.pov.lt/objgraph/
mailto:marius@pov.lt
https://docs.python.org/3/library/gc.html#gc.is_tracked
https://docs.python.org/3/library/gc.html#gc.is_tracked

objgraph Documentation, Release 3.1.2

See also: get_leaking_objects().

Changed in version 1.7: New parameter: objects.

Changed in version 1.8: Accepts fully-qualified type names (i.e. ‘package.module.ClassName’) as well as short
type names (i.e. ‘ClassName’).

objgraph.typestats([objects, shortnames=True])
Count the number of instances for each type tracked by the GC.

Note that the GC does not track simple objects like int or str.

Note that classes with the same name but defined in different modules will be lumped together if shortnames
is True.

Example:

>>> typestats()
{'list': 12041, 'tuple': 10245, ...}
>>> typestats(get_leaking_objects())
{'MemoryError': 1, 'tuple': 2795, 'RuntimeError': 1, 'list': 47, ...}

New in version 1.1.

Changed in version 1.7: New parameter: objects.

Changed in version 1.8: New parameter: shortnames.

objgraph.most_common_types([limit=10, objects, shortnames=True])
Count the names of types with the most instances.

Returns a list of (type_name, count), sorted most-frequent-first.

Limits the return value to at most limit items. You may set limit to None to avoid that.

The caveats documented in typestats() apply.

Example:

>>> most_common_types(limit=2)
[('list', 12041), ('tuple', 10245)]

New in version 1.4.

Changed in version 1.7: New parameter: objects.

Changed in version 1.8: New parameter: shortnames.

objgraph.show_most_common_types([limit=10, objects, shortnames=True, file=sys.stdout])
Print the table of types of most common instances.

The caveats documented in typestats() apply.

Example:

>>> show_most_common_types(limit=5)
tuple 8959
function 2442
wrapper_descriptor 1048
dict 953
builtin_function_or_method 800

New in version 1.1.

Changed in version 1.7: New parameter: objects.

16 Chapter 6. API Documentation

objgraph Documentation, Release 3.1.2

Changed in version 1.8: New parameter: shortnames.

Changed in version 3.0: New parameter: file.

objgraph.show_growth([limit=10, peak_stats={}, shortnames=True, file=sys.stdout])
Show the increase in peak object counts since last call.

Limits the output to limit largest deltas. You may set limit to None to see all of them.

Uses and updates peak_stats, a dictionary from type names to previously seen peak object counts. Usually
you don’t need to pay attention to this argument.

The caveats documented in typestats() apply.

Example:

>>> show_growth()
wrapper_descriptor 970 +14
tuple 12282 +10
dict 1922 +7
...

New in version 1.5.

Changed in version 1.8: New parameter: shortnames.

Changed in version 2.1: New parameter: file.

6.1.2 Locating and Filtering Objects

objgraph.get_leaking_objects([objects])
Return objects that do not have any referents.

These could indicate reference-counting bugs in C code. Or they could be legitimate.

Note that the GC does not track simple objects like int or str.

New in version 1.7.

objgraph.by_type(typename[, objects])
Return objects tracked by the garbage collector with a given class name.

Example:

>>> by_type('MyClass')
[<mymodule.MyClass object at 0x...>]

Note that the GC does not track simple objects like int or str.

Changed in version 1.7: New parameter: objects.

Changed in version 1.8: Accepts fully-qualified type names (i.e. ‘package.module.ClassName’) as well as short
type names (i.e. ‘ClassName’).

objgraph.at(addr)
Return an object at a given memory address.

The reverse of id(obj):

>>> at(id(obj)) is obj
True

Note that this function does not work on objects that are not tracked by the GC (e.g. ints or strings).

6.1. objgraph 17

objgraph Documentation, Release 3.1.2

objgraph.is_proper_module(obj)
Returns True if obj can be treated like a garbage collector root.

That is, if obj is a module that is in sys.modules.

>>> import types
>>> is_proper_module([])
False
>>> is_proper_module(types)
True
>>> is_proper_module(types.ModuleType('foo'))
False

New in version 1.8.

6.1.3 Traversing and Displaying Object Graphs

objgraph.find_ref_chain(obj, predicate[, max_depth=20, extra_ignore=()])
Find a shortest chain of references leading from obj.

The end of the chain will be some object that matches your predicate.

predicate is a function taking one argument and returning a boolean.

max_depth limits the search depth.

extra_ignore can be a list of object IDs to exclude those objects from your search.

Example:

>>> find_ref_chain(obj, lambda x: isinstance(x, MyClass))
[obj, ..., <MyClass object at ...>]

Returns [obj] if such a chain could not be found.

New in version 1.7.

objgraph.find_backref_chain(obj, predicate[, max_depth=20, extra_ignore=()])
Find a shortest chain of references leading to obj.

The start of the chain will be some object that matches your predicate.

predicate is a function taking one argument and returning a boolean.

max_depth limits the search depth.

extra_ignore can be a list of object IDs to exclude those objects from your search.

Example:

>>> find_backref_chain(obj, is_proper_module)
[<module ...>, ..., obj]

Returns [obj] if such a chain could not be found.

Changed in version 1.5: Returns obj instead of None when a chain could not be found.

objgraph.show_chain(chain[, ..., highlight=None, filename=None, extra_info=None, refcounts=False,
shortnames=True])

Show a chain (or several chains) of object references.

Useful in combination with find_ref_chain() or find_backref_chain(), e.g.

18 Chapter 6. API Documentation

objgraph Documentation, Release 3.1.2

>>> show_chain(find_backref_chain(obj, is_proper_module))

You can specify if you want that chain traced backwards or forwards by passing a backrefs keyword argu-
ment, e.g.

>>> show_chain(find_ref_chain(obj, is_proper_module),
... backrefs=False)

Ideally this shouldn’t matter, but for some objects gc.get_referrers() and gc.get_referents()
are not perfectly symmetrical.

You can specify highlight, extra_info, refcounts, shortnames, filename or output argu-
ments like for show_backrefs() or show_refs().

New in version 1.5.

Changed in version 1.7: New parameter: backrefs.

Changed in version 2.0: New parameter: output.

objgraph.show_backrefs(objs[, max_depth=3, extra_ignore=(), filter=None, too_many=10, high-
light=None, filename=None, extra_info=None, refcounts=False, short-
names=True])

Generate an object reference graph ending at objs.

The graph will show you what objects refer to objs, directly and indirectly.

objs can be a single object, or it can be a list of objects. If unsure, wrap the single object in a new list.

filename if specified, can be the name of a .dot or a image file, whose extension indicates the desired output
format; note that output to a specific format is entirely handled by GraphViz: if the desired format is not
supported, you just get the .dot file. If filename and output are not specified, show_backrefs will try
to display the graph inline (if you’re using IPython), otherwise it’ll try to produce a .dot file and spawn a viewer
(xdot). If xdot is not available, show_backrefs will convert the .dot file to a .png and print its name.

output if specified, the GraphViz output will be written to this file object. output and filename should
not both be specified.

Use max_depth and too_many to limit the depth and breadth of the graph.

Use filter (a predicate) and extra_ignore (a list of object IDs) to remove undesired objects from the
graph.

Use highlight (a predicate) to highlight certain graph nodes in blue.

Use extra_info (a function taking one argument and returning a string) to report extra information for
objects.

Specify refcounts=True if you want to see reference counts. These will mostly match the number of arrows
pointing to an object, but can be different for various reasons.

Specify shortnames=False if you want to see fully-qualified type names (‘package.module.ClassName’).
By default you get to see only the class name part.

Examples:

>>> show_backrefs(obj)
>>> show_backrefs([obj1, obj2])
>>> show_backrefs(obj, max_depth=5)
>>> show_backrefs(obj, filter=lambda x: not inspect.isclass(x))
>>> show_backrefs(obj, highlight=inspect.isclass)
>>> show_backrefs(obj, extra_ignore=[id(locals())])

6.1. objgraph 19

objgraph Documentation, Release 3.1.2

Changed in version 1.3: New parameters: filename, extra_info.

Changed in version 1.5: New parameter: refcounts.

Changed in version 1.8: New parameter: shortnames.

Changed in version 2.0: New parameter: output.

objgraph.show_refs(objs[, max_depth=3, extra_ignore=(), filter=None, too_many=10, high-
light=None, filename=None, extra_info=None, refcounts=False, short-
names=True])

Generate an object reference graph starting at objs.

The graph will show you what objects are reachable from objs, directly and indirectly.

objs can be a single object, or it can be a list of objects. If unsure, wrap the single object in a new list.

filename if specified, can be the name of a .dot or a image file, whose extension indicates the desired output
format; note that output to a specific format is entirely handled by GraphViz: if the desired format is not
supported, you just get the .dot file. If filename and output is not specified, show_refs will try to
display the graph inline (if you’re using IPython), otherwise it’ll try to produce a .dot file and spawn a viewer
(xdot). If xdot is not available, show_refs will convert the .dot file to a .png and print its name.

output if specified, the GraphViz output will be written to this file object. output and filename should
not both be specified.

Use max_depth and too_many to limit the depth and breadth of the graph.

Use filter (a predicate) and extra_ignore (a list of object IDs) to remove undesired objects from the
graph.

Use highlight (a predicate) to highlight certain graph nodes in blue.

Use extra_info (a function returning a string) to report extra information for objects.

Specify refcounts=True if you want to see reference counts.

Examples:

>>> show_refs(obj)
>>> show_refs([obj1, obj2])
>>> show_refs(obj, max_depth=5)
>>> show_refs(obj, filter=lambda x: not inspect.isclass(x))
>>> show_refs(obj, highlight=inspect.isclass)
>>> show_refs(obj, extra_ignore=[id(locals())])

New in version 1.1.

Changed in version 1.3: New parameters: filename, extra_info.

Changed in version 1.5: Follows references from module objects instead of stopping. New parameter:
refcounts.

Changed in version 1.8: New parameter: shortnames.

Changed in version 2.0: New parameter: output.

20 Chapter 6. API Documentation

CHAPTER 7

More examples, that also double as tests

7.1 Too many references

Objects that have too many references are truncated

>>> import objgraph
>>> objgraph.show_refs([list(range(7))], too_many=5, filename='too-many.png')
Graph written todot (6 nodes)
Image generated as too-many.png

The same sort of thing applies to backreferences

>>> moo = 'moo'
>>> refs_to_moo = [[moo] for n in range(42)]
>>> objgraph.show_backrefs([moo], too_many=5, max_depth=1, filename='42.png')
Graph written todot (6 nodes)
Image generated as 42.png

21

objgraph Documentation, Release 3.1.2

7.2 Reference counts

You can enable reference counts. The number of arrows pointing to an object should match the number in square
brackets, usually, but there can be exceptions. E.g. objects internal to objgraph’s implementation may inflate the
reference count somewhat.

>>> import sys
>>> one_reference = object()
>>> objgraph.show_backrefs([one_reference], refcounts=True,
... filename='refcounts.png')
Graph written todot (5 nodes)
Image generated as refcounts.png

We see two references to the one_reference object: the one not shown comes from the list passed to
show_backrefs.

I think the extra references to the frame object and locals dict come from the interpreter internals.

7.3 Extra information

You can add extra information to object graphs, if you desire. For example, let’s add object IDs:

>>> x = []
>>> y = [x, [x], dict(x=x)]
>>> import objgraph
>>> objgraph.show_refs([y], extra_info=lambda x: hex(id(x)),
... filename='extra-info.png')
Graph written todot (... nodes)
Image generated as extra-info.png

This way you can then look them up later with at(), if you desire to get a closer look at a particular object:

>>> objgraph.at(id(x)) is x
True

Warning: this doesn’t work with strings or ints or other simple types that aren’t tracked by the cyclic garbage collector:

>>> a = 'a string'
>>> objgraph.at(id(a))

22 Chapter 7. More examples, that also double as tests

objgraph Documentation, Release 3.1.2

7.3. Extra information 23

objgraph Documentation, Release 3.1.2

24 Chapter 7. More examples, that also double as tests

objgraph Documentation, Release 3.1.2

7.4 Highlighting

You can highlight some graph nodes.

>>> class Node(object):
... def __init__(self, *neighbours):
... self.neighbours = list(neighbours)
>>> a = Node()
>>> b = Node(a)
>>> c = Node(b)
>>> d = Node(c)
>>> a.neighbours.append(d)

>>> import objgraph
>>> objgraph.show_backrefs(a, max_depth=15,
... extra_ignore=[id(locals())],
... highlight=lambda x: isinstance(x, Node),
... filename='highlight.png')
Graph written todot (12 nodes)
Image generated as highlight.png

7.5 Uncollectable garbage

Objects that have a __del__ method cannot be collected by the garbage collector if they participate in a cycle, prior
to Python 3.4.

>>> class Nondestructible(list):
... def __del__(self):
... pass

>>> x = Nondestructible()
>>> y = []
>>> z = []
>>> x.append(y)
>>> y.append(z)
>>> z.append(x)

When you remove all other references to these, they end up in gc.garbage.

>>> import objgraph
>>> del x, y, z
>>> import gc
>>> _ = gc.collect()
>>> len(gc.garbage)
1

We highlight these objects by showing the existence of a __del__.

>>> objgraph.show_backrefs(objgraph.by_type('Nondestructible'),
... filename='finalizers.png')
Graph written todot (8 nodes)
Image generated as finalizers.png

Note that classes that define a __del__ method do not have this indicator

7.4. Highlighting 25

objgraph Documentation, Release 3.1.2

26 Chapter 7. More examples, that also double as tests

objgraph Documentation, Release 3.1.2

7.5. Uncollectable garbage 27

objgraph Documentation, Release 3.1.2

>>> objgraph.show_refs(Nondestructible, max_depth=1,
... filename='class-with-finalizers.png')
Graph written todot (5 nodes)
Image generated as class-with-finalizers.png

7.6 Stack frames and generators

Let’s define a custom class

>>> class Canary(object):
... pass

Suppose we’ve a generator that uses it

>>> def count_to_three():
... tweety = Canary()
... yield 1
... yield 2
... yield 3

and we make it active

>>> it = count_to_three()
>>> next(it)
1

Now we can see that our Canary object is alive in memory

>>> import objgraph
>>> objgraph.count('Canary')
1

and we can see what holds it in memory

>>> objgraph.show_backrefs(objgraph.by_type('Canary'),
... max_depth=7,
... filename='canary.png')
Graph written todot (15 nodes)
Image generated as canary.png

28 Chapter 7. More examples, that also double as tests

objgraph Documentation, Release 3.1.2

7.6. Stack frames and generators 29

objgraph Documentation, Release 3.1.2

Or we can examine just one of the reference chains leading straight to a module.

>>> objgraph.show_chain(
... objgraph.find_backref_chain(objgraph.by_type('Canary')[0],
... objgraph.is_proper_module),
... filename='canary-chain.png')
Graph written todot (11 nodes)
Image generated as canary-chain.png

To a first approximation, modules are garbage-collection roots, which makes the latter technique most useful.

30 Chapter 7. More examples, that also double as tests

objgraph Documentation, Release 3.1.2

7.7 Graph searches

The other day I was wondering why pickling a particular object errored out with an error deep in one of the subobjects.

>>> class MyUnpicklableObject(object):
... def __getstate__(self):
... raise NotImplementedError
...
>>> my_object = dict(foo=dict(unrelated='things'),
... bar=[dict(nesting='fun'),
... dict(boobytrap=MyUnpicklableObject())])
>>> import objgraph
>>> objgraph.show_chain(
... objgraph.find_ref_chain(
... my_object,
... lambda x: isinstance(x, MyUnpicklableObject)),
... backrefs=False,
... filename='forward-chain.png')
Graph written to ...dot (4 nodes)
Image generated as forward-chain.png

7.8 Quoting unsafe characters

Let’s make sure our string quoting function can handle anything:

>>> import objgraph
>>> all_the_chars = dict((chr(i), i) for i in range(256))
>>> objgraph.show_refs(all_the_chars, too_many=600,
... filename='all-the-chars.dot')
Graph written to all-the-chars.dot (... nodes)

Trust me, you do not want to see the resulting image.

7.7. Graph searches 31

objgraph Documentation, Release 3.1.2

32 Chapter 7. More examples, that also double as tests

CHAPTER 8

History

I’ve developed a set of functions that eventually became objgraph when I was hunting for memory leaks in a Python
program. The whole story – with illustrated examples – is in this series of blog posts:

• Hunting memory leaks in Python

• Python object graphs

• Object graphs with graphviz

And here’s the change log

8.1 Changes

8.1.1 3.1.2 (2017-11-27)

• Correct UTF-8 mojibake in the changelog and switch all links to HTTPS.

8.1.2 3.1.1 (2017-10-30)

• Add support for Python 3.6.

• Replace bare except: in safe_repr() with except Exception:.

8.1.3 3.1.0 (2016-12-07)

• Support displaying graphs inline in IPython/Jupyter notebooks (issue 28
<https://github.com/mgedmin/objgraph/pull/28>).

33

https://mg.pov.lt/blog/hunting-python-memleaks.html
https://mg.pov.lt/blog/python-object-graphs.html
https://mg.pov.lt/blog/object-graphs-with-graphviz.html

objgraph Documentation, Release 3.1.2

8.1.4 3.0.1 (2016-09-17)

• The file argument of show_most_common_types() and show_growth() now defaults to None in-
stead of sys.stdout. None is interpreted to be the same as sys.stdout, which means the right stdout
will be used if you change it at runtime (which happens, in doctests).

8.1.5 3.0.0 (2016-04-13)

• show_most_common_types() and show_growth() now accept a file argument if you want to redi-
rect the output elsewhere.

Fixes issue 24. Contributed by “d-sun-d”.

• Don’t trust __class__ to be accurate and __name__ to be a string. Fixes errors in some convoluted corner
cases when mocks are involved.

Contributed by Andrew Shannon Brown in PR 26.

• Drop support for Python 2.4, 2.5, and 2.6.

• Drop support for Python 3.1 and 3.2.

• Add support for Python 3.5.

8.1.6 2.0.1 (2015-07-28)

• Avoid creating reference cycles between the stack frame and the local objects variable in by_type(),
count(), and typestats().

Fixes issue 22. Contributed by Erik Bray.

8.1.7 2.0.0 (2015-04-18)

• show_refs() and show_backrefs() now accept a file-like object (via the new output argument) as an
alternative to a filename.

• Made internal helper methods private. This includes find_chain(), show_graph(), obj_node_id(),
obj_label(), quote(), long_typename(), safe_repr(), short_repr(), gradient(),
edge_label(), and _program_in_path().

• Correctly determine the name of old-style classes in count(), by_type(), and graph drawing functions.

Fixes issue 16. Contributed by Mike Lambert.

8.1.8 1.8.1 (2014-05-15)

• Do not expect file objects to have an encoding attribute. Makes objgraph compatible with Eventlet’s monkey-
patching.

Fixes issue 6. Contributed by Jakub Stasiak.

34 Chapter 8. History

https://github.com/mgedmin/objgraph/pull/24
https://github.com/mgedmin/objgraph/pull/26
https://github.com/mgedmin/objgraph/pull/22
https://github.com/mgedmin/objgraph/pull/16
https://github.com/mgedmin/objgraph/pull/6

objgraph Documentation, Release 3.1.2

8.1.9 1.8.0 (2014-02-13)

• Moved to GitHub.

• Python 3.4 support (LP#1270872).

• New function: is_proper_module().

• New shortnames argument for typestats(), most_common_types(),
show_most_common_types(), show_growth(), show_refs(), and show_backrefs().

count() and by_type() accept fully-qualified type names now.

Fixes issue 4.

8.1.10 1.7.2 (2012-10-23)

• Bugfix: setup.py sdist was broken on Python 2.7 (UnicodeDecodeError in tarfile).

• The filename argument for show_refs() and show_backrefs() now allows arbitrary image formats,
not just PNG. Patch by Riccardo Murri.

• Temporary dot files are now named objgraph-*.dot instead of tmp*.dot.

• Python 3.3 support: no code changes, but some tests started failing because the new and improved dictionary
implementation no longer holds references to str objects used as dict keys.

• Added a tox.ini for convenient multi-Python testing.

8.1.11 1.7.1 (2011-12-11)

• Bugfix: non-ASCII characters in object representations would break graph generation on Python 3.x, in some
locales (e.g. with LC_ALL=C). Reported and fixed by Stefano Rivera.

• Bugfix: setup.py was broken on Python 3.x

• Bugfix: dot.exe/xdot.exe were not found on Windows (LP#767239).

• Documentation updates: document the forgotten find_ref_chain(), update show_chain() prototype.

8.1.12 1.7.0 (2011-03-11)

• New function: find_ref_chain().

• New backrefs argument for show_chain().

• New function: get_leaking_objects(), based on a blog post by Kristján Valur.

• New objects argument for count(), typestats(), most_common_types(),
show_most_common_types(), and by_type().

• Edges pointing to function attributes such as __defaults__ or __globals__ are now labeled.

• Edge labels that are not simple strings now show the type.

• Bugfix: ‘0’ and other unsafe characters used in a dictionary key could break graph generation.

• Bugfix: show_refs(..., filename=’graph.dot’) would then go to complain about unrecognized file types and then
produce a png.

8.1. Changes 35

https://launchpad.net/bugs/1270872
https://github.com/mgedmin/objgraph/issues/4
https://launchpad.net/~rmurri
https://launchpad.net/~stefanor
https://launchpad.net/bugs/767239
https://cosmicpercolator.com/2010/12/08/finding-c-reference-leaks-using-the-gc-module/

objgraph Documentation, Release 3.1.2

8.1.13 1.6.0 (2010-12-18)

• Python 3 support, thanks to Stefano Rivera (fixes LP#687601).

• Removed weird weakref special-casing.

8.1.14 1.5.1 (2010-12-09)

• Avoid test failures in uncollectable-garbage.txt (fixes LP#686731).

• Added HACKING.txt (later renamed to HACKING.rst).

8.1.15 1.5.0 (2010-12-05)

• Show frame objects as well (fixes LP#361704).

• New functions: show_growth(), show_chain().

• find_backref_chain() returns [obj] instead of None when a chain could not be found. This makes
show_chain(find_backref_chain(...), ...) not break.

• Show how many references were skipped from the output of show_refs()/show_backrefs() by speci-
fying too_many.

• Make show_refs() descend into modules.

• Do not highlight classes that define a __del__, highlight only instances of those classes.

• Option to show reference counts in show_refs()/show_backrefs().

• Add Sphinx documentation and a PyPI long description.

8.1.16 1.4.0 (2010-11-03)

• Compatibility with Python 2.4 and 2.5 (tempfile.NamedTemporaryFile has no delete argument).

• New function: most_common_types().

8.1.17 1.3.1 (2010-07-17)

• Rebuild an sdist with no missing files (fixes LP#606604).

• Added MANIFEST.in and a Makefile to check that setup.py sdist generates source distributions with no files
missing.

8.1.18 1.3 (2010-07-13)

• Highlight objects with a __del__ method.

• Fixes LP#483411: suggest always passing [obj] to show_refs(), show_backrefs(), since obj might
be a list/tuple.

• Fixes LP#514422: show_refs(), show_backrefs() don’t create files in the current working directory
any more. Instead they accept a filename argument, which can be a .dot file or a .png file. If None or not
specified, those functions will try to spawn xdot as before.

• New extra_info argument to graph-generating functions (patch by Thouis Jones, LP#558914).

36 Chapter 8. History

https://launchpad.net/bugs/687601
https://launchpad.net/bugs/686731
https://launchpad.net/bugs/361704
https://pypi.python.org/pypi/Sphinx
https://launchpad.net/bugs/606604
https://launchpad.net/bugs/483411
https://launchpad.net/bugs/514422
https://launchpad.net/bugs/558914

objgraph Documentation, Release 3.1.2

• setup.py should work with distutils now (LP#604430, thanks to Randy Heydon).

8.1.19 1.2 (2009-03-25)

• Project website, public source repository, uploaded to PyPI.

• No code changes.

8.1.20 1.1 (2008-09-10)

• New function: show_refs() for showing forward references.

• New functions: typestats() and show_most_common_types().

• Object boxes are less crammed with useless information (such as IDs).

• Spawns xdot if it is available.

8.1.21 1.0 (2008-06-14)

• First public release.

8.1. Changes 37

https://launchpad.net/bugs/604430
https://pypi.python.org/pypi/xdot

objgraph Documentation, Release 3.1.2

38 Chapter 8. History

CHAPTER 9

Support and Development

The source code can be found in this Git repository: https://github.com/mgedmin/objgraph.

To check it out, use git clone https://github.com/mgedmin/objgraph.

Report bugs at https://github.com/mgedmin/objgraph/issues.

For more information, see Hacking on objgraph.

9.1 Hacking on objgraph

Start by geting the latest source with

git clone https://github.com/mgedmin/objgraph

Run the test suite with

make test

The test suite is mostly smoke tests (i.e. crashes will be noticed, subtly wrong output will be missed). I hope to
improve that in the future, but don’t hold your breath. Most of the testing is done manually or semi-automatically, e.g.
by running make images and eyeballing the results (imgdiff is handy there).

9.1.1 Sending me patches

GitHub pull requests are probably the best way to send me patches. Or just email them to <marius@gedmin.as>.

I’d appreciate issues in GitHub for each proposed change, be it a bug or a feature request.

9.1.2 Supported Python versions

Python 2.4 through 2.7, as well as 3.x.

39

https://github.com/mgedmin/objgraph
https://github.com/mgedmin/objgraph/issues
https://pypi.python.org/pypi/imgdiff
mailto:marius@gedmin.as
https://github.com/mgedmin/objgraph/issues

objgraph Documentation, Release 3.1.2

You can run the test suite for all supported Python versions with

make test-all-pythons

or with detox (which will be faster, since it runs the tests in parallel).

If a test fails, often the easiest way to debug is is to compare the output visually

make images PYTHON=pythonX.Y
git config diff.imgdiff.command 'f() { imgdiff --eog -H $1 $2; }; f'
git diff docs/*.png
git checkout -- docs/*.png docs/*.dot

An easy way to get Pythons 2.4 through 2.7 (and 3.x) on Ubuntu is to use Felix Krull’s “deadsnakes” PPA:

sudo add-apt-repository ppa:fkrull/deadsnakes
sudo apt-get update
sudo apt-get install python2.{4,5,6,7} python3.{1,2,3}

9.1.3 Test coverage

As I mentioned, the tests are mostly smoke tests, and even then they’re incomplete. Install coverage to see how
incomplete they are with

make coverage

I use a vim plugin to higlight lines not covered by tests while I edit

make coverage
vim objgraph.py

:HighlightCoverage

If you prefer HTML reports, run

make coverage
coverage html

and then browse htmlcov/index.html.

9.1.4 Documentation

To fully rebuild the documentation, run

make clean images docs

Please git checkout -- the png files that haven’t changed significantly. (Many of the images include things like
memory addresses which tend to change from run to run.)

imgdiff is useful for comparing the images with their older versions:

git config diff.imgdiff.command 'f() { imgdiff $1 $2; }; f'
git diff docs/*.png

It has a few options that may make the changes easier to see. I personally like:

40 Chapter 9. Support and Development

https://pypi.python.org/pypi/detox
https://launchpad.net/~fkrull/+archive/deadsnakes
https://pypi.python.org/pypi/coverage
https://github.com/mgedmin/coverage-highlight.vim/
https://pypi.python.org/pypi/imgdiff

objgraph Documentation, Release 3.1.2

git config diff.imgdiff.command 'f() { imgdiff --eog -H $1 $2; }; f'
git diff docs/*.png

When you add a new doctest file, remember to include it in docs/index.txt.

When you add a new function, make sure it has a PEP-257-compliant docstring and add the appropriate autodoc
directive to objgraph.txt.

I insist on one departure from PEP-257: the closing """ should not be preceded by a blank line. Example:

def do_something():
"""Do something.

Return something valuable.
"""

If Emacs is broken, fix emacs, do not make my docstrings ugly.

On the other hand, if the last thing in a docstring is an indented block quote or a doctest section, it should be surrounded
by blank lines. Like this:

def do_something():
"""Do something.

Return something valuable.

Example:

>>> do_something()
42

"""

I find restview very handy for documentation writing: it lets me see how the text looks by pressing Ctrl-R in a browser
window, without having to re-run any documentation building commands. The downside is that restview doesn’t
support Sphinx extensions to ReStructuredText, so you end up with error messages all over the place. Then again this
is useful for bits that can’t use Sphinx extensions, like the PyPI long description.

To preview the PyPI long description (which is generated by concatenating README.rst and CHANGES.rst) with
restview, use this handy command:

make preview-pypi-description

because typing

restview -e "python setup.py --long-description"

is tedious, and bash has tab-completion for makefile rules.

9.1.5 Making releases

You need write access to the PyPI package and to the Git branch on GitHub. At the moment of this writing, this means
you must be me.

Run make release and follow the instructions. It is safe to run this command at any time: it never com-
mits/pushes/uploads to PyPI, it just tells you what to do.

9.1. Hacking on objgraph 41

https://www.python.org/dev/peps/pep-0257/
https://pypi.python.org/pypi/restview

objgraph Documentation, Release 3.1.2

9.1.6 Avoiding incomplete releases

It is important to keep MANIFEST.in up to date so that source tarballs generated with python setup.py sdist
aren’t missing any files, even if you don’t have the right setuptools version control plugins installed. You can run

make distcheck

to be sure this is so, but it’s not necessary – make release will do this every time.

(I’ve later written a standalone tool, check-manifest that can do this check for every Python package.)

42 Chapter 9. Support and Development

https://docs.python.org/distutils/sourcedist.html#manifest-template
https://pypi.python.org/pypi/check-manifest

Python Module Index

o
objgraph, 15

43

objgraph Documentation, Release 3.1.2

44 Python Module Index

Index

A
at() (in module objgraph), 17

B
by_type() (in module objgraph), 17

C
count() (in module objgraph), 15

F
find_backref_chain() (in module objgraph), 18
find_ref_chain() (in module objgraph), 18

G
get_leaking_objects() (in module objgraph), 17

I
is_proper_module() (in module objgraph), 18

M
most_common_types() (in module objgraph), 16

O
objgraph (module), 15

S
show_backrefs() (in module objgraph), 19
show_chain() (in module objgraph), 18
show_growth() (in module objgraph), 17
show_most_common_types() (in module objgraph), 16
show_refs() (in module objgraph), 20

T
typestats() (in module objgraph), 16

45

	Installation and Documentation
	Quick start
	Backreferences
	Memory leak example
	Reference counting bugs
	API Documentation
	objgraph

	More examples, that also double as tests
	Too many references
	Reference counts
	Extra information
	Highlighting
	Uncollectable garbage
	Stack frames and generators
	Graph searches
	Quoting unsafe characters

	History
	Changes

	Support and Development
	Hacking on objgraph

	Python Module Index

